Regularity and finite element approximation for two-dimensional elliptic equations with line Dirac sources
Document Type
Article
Publication Date
9-2021
Publication Title
Journal of Computational and Applied Mathematics
Abstract
We study the elliptic equation with a line Dirac delta function as the source term subject to the Dirichlet boundary condition in a two-dimensional domain. Such a line Dirac measure causes different types of solution singularities in the neighborhood of the line fracture. We establish new regularity results for the solution in a class of weighted Sobolev spaces and propose finite element algorithms that approximate the singular solution at the optimal convergence rate. Numerical tests are presented to justify the theoretical findings.
Volume
393
Issue
C
First Page
113518
Recommended Citation
Li H, Wan X, Yin P, Zhao L. Regularity and finite element approximation for two-dimensional elliptic equations with line Dirac sources. J Comput Apppl Math 2021 Sep;393: 113518. https://dx.doi.org/10.1016/j.cam.2021.113518