Rapid detection of novel coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification.
Document Type
Article
Publication Date
1-1-2020
Publication Title
PLoS One
Abstract
Novel Corona virus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 or 2019-nCoV), and the subsequent disease caused by the virus (coronavirus disease 2019 or COVID-19), is an emerging global health concern that requires a rapid diagnostic test. Quantitative reverse transcription PCR (qRT-PCR) is currently the standard for SARS-CoV-2 detection; however, Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) may allow for faster and cheaper field based testing at point-of-risk. The objective of this study was to develop a rapid screening diagnostic test that could be completed in 30-45 minutes. Simulated patient samples were generated by spiking serum, urine, saliva, oropharyngeal swabs, and nasopharyngeal swabs with a portion of the SARS-CoV-2 nucleic sequence. RNA isolated from nasopharyngeal swabs collected from actual COVID-19 patients was also tested. The samples were tested using RT-LAMP as well as by conventional qRT-PCR. Specificity of the RT-LAMP was evaluated by also testing against other related coronaviruses. RT-LAMP specifically detected SARS-CoV-2 in both simulated patient samples and clinical specimens. This test was performed in 30-45 minutes. This approach could be used for monitoring of exposed individuals or potentially aid with screening efforts in the field and potential ports of entry.
Volume
15
Issue
6
First Page
0234682
Last Page
0234682
Recommended Citation
Lamb LE, Bartolone SN, Ward E, Chancellor MB. Rapid detection of novel coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification. PLoS One. 2020 Jun 12;15(6):e0234682. doi: 10.1371/journal.pone.0234682. PMID: 32530929; PMCID: PMC7292379.
DOI
10.1371/journal.pone.0234682
ISSN
1932-6203
PubMed ID
32530929