Urinary oxidized, but not enzymatic vitamin E metabolites are inversely associated with measures of glucose homeostasis in middle-aged healthy individuals.

Document Type

Article

Publication Date

6-1-2021

Publication Title

Clinical nutrition (Edinburgh, Scotland)

Abstract

BACKGROUND & AIMS: Damage induced by lipid peroxidation has been associated with impaired glucose homeostasis. Vitamin E (α-tocopherol, α-TOH) competitively reacts with lipid peroxyl radicals to mitigate oxidative damage, and forms oxidized vitamin E metabolites. Accordingly, we aimed to investigate the associations between α-TOH metabolites (oxidized and enzymatic) in both circulation and urine and measures of glucose homeostasis in the general middle-aged population.

METHODS: This cross-sectional study was embedded in the population-based Netherlands Epidemiology of Obesity (NEO) Study. α-TOH metabolites in blood (α-TOH and α-CEHC-SO

RESULTS: We included 498 participants (45% men) with mean (SD) age of 55.8 (6.1) years who did not use glucose-lowering medication. While blood α-TOH was not associated with measures of glucose homeostasis, urinary oxidized metabolites (α-TLHQ-SO

CONCLUSION: Higher urinary levels of oxidized α-TOH metabolites as well as higher oxidized-to-enzymatic α-TOH metabolite ratio, but not circulating α-TOH or enzymatic metabolites, were associated with lower insulin resistance. Rather than circulating α-TOH, estimates of the conversion of α-TOH might be informative in relation to health and disease.

Volume

40

Issue

6

First Page

4192

Last Page

4200

DOI

10.1016/j.clnu.2021.01.039

ISSN

1532-1983

PubMed ID

33593663

Share

COinS