Technical Note: On the spatial correlation between robust CT-ventilation methods and SPECT ventilation.
Document Type
Article
Publication Date
11-1-2020
Publication Title
Medical physics
Abstract
PURPOSE: The computed tomography (CT)-derived ventilation imaging methodology employs deformable image registration (DIR) to recover respiratory motion-induced volume changes from an inhale/exhale CT image pair, as a surrogate for ventilation. The Integrated Jacobian Formulation (IJF) and Mass Conserving Volume Change (MCVC) numerical methods for volume change estimation represent two classes of ventilation methods, namely transformation based and intensity (Hounsfield Unit) based, respectively. Both the IJF and MCVC methods utilize subregional volume change measurements that satisfy a specified uncertainty tolerance. In previous publications, the ventilation images resulting from this numerical strategy demonstrated robustness to DIR variations. However, the reduced measurement uncertainty comes at the expense of measurement resolution. The purpose of this study was to examine the spatial correlation between robust CT-ventilation images and single photon emission CT-ventilation (SPECT-V).
METHODS: Previously described implementations of IJF and MCVC require the solution of a large scale, constrained linear least squares problem defined by a series of robust subregional volume change measurements. We introduce a simpler parameterized implementation that reduces the number of unknowns while increasing the number of data points in the resulting least squares problem. A parameter sweep of the measurement uncertainty tolerance,
RESULTS: The median correlations between MCVC and SPECT-V ranged from 0.20 to 0.48 across the parameter sweep, while the median correlations for IJF and SPECT-V ranged between 0.79 and 0.82. For the optimal IJF tolerance
CONCLUSION: The reported correlations indicate that robust methods generate ventilation images that are spatially consistent with SPECT-V, with the transformation-based IJF method yielding higher correlations than those previously reported in the literature. For both methods, overall correlations were found to marginally vary for
Volume
47
Issue
11
First Page
5731
Last Page
5738
Recommended Citation
Castillo E, Castillo R, Vinogradskiy Y, Nair G, Grills I, Guerrero T, Stevens C. Technical Note: On the spatial correlation between robust CT-ventilation methods and SPECT ventilation. Med Phys. 2020 Nov;47(11):5731-5738. doi: 10.1002/mp.14511. Epub 2020 Oct 17. PMID: 33007118; PMCID: PMC7727923.
DOI
10.1002/mp.14511
ISSN
2473-4209
PubMed ID
33007118