MR-based synthetic CT image for intensity-modulated proton treatment planning of nasopharyngeal carcinoma patients.
Document Type
Article
Publication Date
11-1-2022
Publication Title
Acta oncologica (Stockholm, Sweden)
Abstract
PURPOSE: To develop an advanced deep convolutional neural network (DCNN) architecture to generate synthetic CT (SCT) images from MR images for intensity-modulated proton therapy (IMPT) treatment planning of nasopharyngeal cancer (NPC) patients.
Methods: T1-weighted MR images and paired CT (PCT) images were obtained from 206 NPC patients. For each patient, deformable image registration was performed between MR and PCT images to create an MR-CT image pair. Thirty pairs were randomly chosen as the independent test set and the remaining 176 pairs (14 for validation and 162 for training) were used to build two conditional generative adversarial networks (GANs): 1) GAN3D: using a 3D U-net enhanced with residual connections and attentional mechanism as the generator and 2) GAN2D: using a 2D U-net as the generator. For each test patient, SCT images were generated using the generators with the MR images as input and were compared with respect to the corresponding PCT image. A clinical IMPT plan was created and optimized on the PCT image. The dose was recalculated on the SCT images and compared with the one calculated on the PCT image.
RESULTS: The mean absolute errors (MAEs) between the PCT and SCT, within the body, were (64.89 ± 5.31) HU and (64.31 ± 4.61) HU for the GAN
CONCLUSIONS: The SCT images generated using GANs achieved clinical acceptable dosimetric accuracy for IMPT of NPC patients. Using advanced DCNN architecture design, such as residual connections and attention mechanism, SCT image quality was further improved and resulted in a small dosimetric improvement.
Volume
61
Issue
11
First Page
1417
Last Page
81424
Recommended Citation
Chen S, Peng Y, Qin A, Liu Y, Zhao C, Deng X, et al. [Deraniyagala R, Stevens C, Ding X] MR-based synthetic CT image for intensity-modulated proton treatment planning of nasopharyngeal carcinoma patients. Acta Oncol. 2022 Nov;61(11):1417-1424. doi: 10.1080/0284186X.2022.2140017. PMID: 36305424.
DOI
10.1080/0284186X.2022.2140017
ISSN
1651-226X
PubMed ID
36305424