Effect of uncertainties in quantitative 18 F-FDG PET/CT imaging feedback for intratumoral dose-response assessment and dose painting by number

Document Type

Article

Publication Date

11-1-2020

Publication Title

Medical physics

Abstract

PURPOSE: Intratumoral dose response can be detected using serial fluoro-2-deoxyglucose-(FDG) positron emission tomography (PET)/computed tomography (CT) imaging feedback during treatment and used to guide adaptive dose painting by number (DPbN). However, to reliably implement this technique, the effect of uncertainties in quantitative PET/CT imaging feedback on tumor voxel dose-response assessment and DPbN needs to be determined and reduced.

METHODS: Three major uncertainties, induced by (a) PET imaging partial volume effect (PVE) and (b) tumor deformable image registration (DIR), and (c) variation of the time interval between FDG injection and PET image acquisition (TI), were determined using serial FDG-PET/CT images acquired during chemoradiotherapy of 18 head and neck cancer patients. PET imaging PVE was simulated using the discrepancy between with and without iterative deconvolution-based PVE corrections. Effect of tumor DIR uncertainty was simulated using the discrepancy between two DIR algorithms, including one with and one without soft-tissue mechanical correction for the voxel displacement. The effect of TI variation was simulated using linear interpolation on the dual-point PET/CT images. Tumor voxel pretreatment metabolic activity (SUV

RESULTS: Partial volume effect and TI variations of 10 mins induced a mean ± standard deviation (SD) of tumor voxel SUV

CONCLUSIONS: Effect of uncertainties in quantitative FDG-PET/CT imaging feedback on intratumoral dose-response quantification was not negligible. These uncertainties primarily caused by PVE and tumor DIR were highly dependent on individual tumor shape, volume, shrinkage during treatment, and pretreatment SUV heterogeneity, which can be managed individually. The adverse effects of these uncertainties could be minimized by using proper PVE corrections and DIR methods and compensated for in the clinical implementation of DPbN.

Volume

47

Issue

11

First Page

5681

Last Page

5692

DOI

10.1002/mp.14482

ISSN

2473-4209

PubMed ID

32966627

Share

COinS