Titania nanotube morphologies for osseointegration via models of in vitro osseointegrative potential and in vivo intramedullary fixation
Document Type
Article
Publication Date
5-1-2020
Publication Title
J Biomed Mater Res B Appl Biomater
Abstract
© 2019 Wiley Periodicals, Inc. As total joint replacements increase annually, new strategies to attain solid bone-implant fixation are needed to increase implant survivorship. This study evaluated two morphologies of titania nanotubes (TiNT) in in vitro experiments and an in vivo rodent model of intramedullary fixation, to simulate joint arthroplasty conditions. TiNT surfaces were prepared via an electrochemical etching process, resulting in two different TiNT morphologies, an aligned structure with nanotubes in parallel and a trabecular bone-like structure. in vitro data showed bone marrow cell differentiation into osteoblasts as well as osteoblastic phenotypic behavior through 21 days. In vivo, both TiNT morphologies generated greater bone formation and bone-implant contact than control at 12 weeks, as indicated by μCT analyses and histology, respectively. TiNT groups also exhibited greater strength of fixation compared to controls, when subjected to wire pull-out testing. TiNT may be a promising surface modification for promoting osseointegration.
Volume
108
Issue
4
First Page
1483
Last Page
1493
Recommended Citation
Baker EA, Vara AD, Salisbury MR, Fleischer MM, Baker KC, Fortin PT, Roberts RV, Friedrich CR. Titania nanotube morphologies for osseointegration via models of in vitro osseointegrative potential and in vivo intramedullary fixation. J Biomed Mater Res B Appl Biomater. 2020 May;108(4):1483-1493. doi: 10.1002/jbm.b.34496. Epub 2019 Nov 6. PMID: 31692221.
DOI
10.1002/jbm.b.34496
PubMed ID
31692221