Ocular Coherence Tomography Image Data Of The Retinal Laminar Structure In A Mouse Model Of Oxygen-Induced Retinopathy

Kimberly , Drenser, Beaumont Hospital
Michael Trese, Beaumont Hospital

Association for Research in Vision and Ophthalmology (ARVO) Annual Meeting, Baltimore, MD, May 7-11, 2017.

Abstract

The data presented in this article are related to the research paper entitled "Norrin treatment improves ganglion cell survival in an oxygen-induced model of retinal ischemia" (Dailey et al., 2017) [1] This article describes treatment with the human Norrin protein, an atypical Wnt-protein, to improve the survival of retinal ganglion cells in a murine model of Oxygen-Induced Retinopathy (OIR). That study utilized Optical coherence tomography (OCT) to visualize retinal layers at high resolution in vivo, and to quantify changes to nerve fiber layer thickness. Organization of the laminar structure of other retinal layers in this model in vivo, were not known because of uncertainties regarding potential artifacts during the processing of tissue for traditional histology. The OCT image data provided here shows researchers the retinal laminar structural features that exist in vivo in this popular mouse OIR model. Traditional H&E stained retinal tissue sections are also provided here for comparison.