Predicting Ablation Zones with Multislice Volumetric 2-D Magnetic Resonance Thermal Imaging.
Document Type
Article
Publication Date
1-2021
Publication Title
International Journal of Hyperthermia
Abstract
Background: High-intensity focused ultrasound (HIFU) serves as a noninvasive stereotactic system for the ablation of brain metastases; however, treatments are limited to simple geometries and energy delivery is limited by the high acoustic attenuation of the calvarium. Minimally-invasive magnetic resonance-guided robotically-assisted (MRgRA) needle-based therapeutic ultrasound (NBTU) using multislice volumetric 2-D magnetic resonance thermal imaging (MRTI) overcomes these limitations and has potential to produce less collateral tissue damage than current methods.
Objective: To correlate multislice volumetric 2-D MRTI volumes with histologically confirmed regions of tissue damage in MRgRA NBTU.
Methods: Seven swine underwent a total of 8 frontal MRgRA NBTU lesions. MRTI ablation volumes were compared to histologic tissue damage on brain sections stained with 2,3,5-triphenyltetrazolium chloride (TTC). Bland-Altman analyses and correlation trends were used to compare MRTI and TTC ablation volumes.
Results: Data from the initial and third swine's ablations were excluded due to sub-optimal tissue staining. For the remaining ablations (n = 6), the limits of agreement between the MRTI and histologic volumes ranged from -0.149 cm3 to 0.252 cm3 with a mean difference of 0.052 ± 0.042 cm3 (11.1%). There was a high correlation between the MRTI and histology volumes (r2 = 0.831) with a strong linear relationship (r = 0.868).
Conclusion: We used a volumetric MRTI technique to accurately track thermal changes during MRgRA NBTU in preparation for human trials. Improved volumetric coverage with MRTI enhanced our delivery of therapy and has far-reaching implications for focused ultrasound in the broader clinical setting.
Volume
38
Issue
1
First Page
907
Last Page
915
Recommended Citation
Campwala Z, Szewczyk B, Maietta T, Trowbridge R, Tarasek M, Bhushan C, Fiveland E, Ghoshal G, Heffter T, Gandomi K, Carvalho PA, Nycz C, Jeannotte E, Staudt M, Nalwalk J, Hellman A, Zhao Z, Burdette EC, Fischer G, Yeo D, Pilitsis JG. Predicting ablation zones with multislice volumetric 2-D magnetic resonance thermal imaging. Int J Hyperthermia. 2021;38(1):907-915. doi: 10.1080/02656736.2021.1936215. PMID: 34148489.
DOI
doi: 10.1080/02656736.2021.1936215
ISSN
1464-5157
PubMed ID
34148489