Clearance Confusion: An Exploratory Analysis of Inpatient Dosing Discordances Between Renal Estimating Equations

Document Type

Article

Publication Date

11-1-2020

Publication Title

The Annals of pharmacotherapy

Abstract

© The Author(s) 2020. Background: Numerous equations exist for estimating renal clearance for drug dosing, and discordance rates may be as high as 40% in certain populations. However, the populations and types of equations used in these studies may not be generalizable to broader pharmacy practice. Objectives: To determine the dosing discordance rate between Cockcroft-Gault (C-G), Chronic Kidney Disease Epidemiology (CKD-EPI), and Modification of Diet in Renal Disease (MDRD) equations in a community hospital population. Methods: This was a cross-sectional analysis of inpatients who had documented renal function assessment over a 6-month period. Renal estimation was calculated using 5 equations (MDRD, CKD-EPI, and 3 C-G variants). Differences between equations were assessed using mean bias, dosing discordance, and agreement (κ statistic). Patients with acute kidney injury and those requiring renal replacement therapy were excluded. Results: A total of 466 patients were eligible for inclusion. Dosing discordance was evident between C-G variants and both MDRD and CKD-EPI equations in greater than 20% of patients. Agreement was highest between MDRD and CKD-EPI (κ = 0.93) and lowest between MDRD and C-G calculated using ideal body weight (κ = 0.33). The majority of discordant instances led to higher dosing recommendations when using MDRD and CKD-EPI equations compared with C-G variants. Dosing discordance exceeded 18% between the different C-G variants, with the highest discordance (36%) observed between total body weight and ideal body weight variants. Conclusion and Relevance: Dosing discordance between renal estimating equations is widespread. Practitioners and institutions should be aware of these differences when dosing medications and implementing renal dosing policies.

Volume

55

Issue

11

First Page

1102

Last Page

1108

DOI

10.1177/1060028020922492

ISSN

1542-6270

PubMed ID

32410457

Share

COinS