Title

Targeted metabolomics highlights perturbed metabolism in the brain of autism spectrum disorder sufferers

Document Type

Article

Publication Date

5-1-2020

Abstract

© 2020, Springer Science+Business Media, LLC, part of Springer Nature. Introduction: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by deficiencies in social interactions and communication, combined with restricted and repetitive behavioral issues. Objectives: As little is known about the etiopathophysiology of ASD and early diagnosis is relatively subjective, we aim to employ a targeted, fully quantitative metabolomics approach to biochemically profile post-mortem human brain with the overall goal of identifying metabolic pathways that may have been perturbed as a result of the disease while uncovering potential central diagnostic biomarkers. Methods: Using a combination of 1H NMR and DI/LC–MS/MS we quantitatively profiled the metabolome of the posterolateral cerebellum from post-mortem human brain harvested from people who suffered with ASD (n = 11) and compared them with age-matched controls (n = 10). Results: We accurately identified and quantified 203 metabolites in post-mortem brain extracts and performed a metabolite set enrichment analyses identifying 3 metabolic pathways as significantly perturbed (p < 0.05). These include Pyrimidine, Ubiquinone and Vitamin K metabolism. Further, using a variety of machine-based learning algorithms, we identified a panel of central biomarkers (9-hexadecenoylcarnitine (C16:1) and the phosphatidylcholine PC ae C36:1) capable of discriminating between ASD and controls with an AUC = 0.855 with a sensitivity and specificity equal to 0.80 and 0.818, respectively. Conclusion: For the first time, we report the use of a multi-platform metabolomics approach to biochemically profile brain from people with ASD and report several metabolic pathways which are perturbed in the diseased brain of ASD sufferers. Further, we identified a panel of biomarkers capable of distinguishing ASD from control brains. We believe that these central biomarkers may be useful for diagnosing ASD in more accessible biomatrices.

PubMed ID

32333121

This document is currently not available here.

Share

COinS