Magnetic resonance-based synthetic computed tomography images generated using generative adversarial networks for nasopharyngeal carcinoma radiotherapy treatment planning.

Document Type

Article

Publication Date

9-1-2020

Publication Title

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology

Abstract

BACKGROUND AND PURPOSE: To investigate the feasibility of synthesizing computed tomography (CT) images from magnetic resonance (MR) images using generative adversarial networks (GANs) for nasopharyngeal carcinoma (NPC) intensity-modulated radiotherapy (IMRT) planning.

MATERIALS AND METHODS: Conventional T1-weighted MR images and CT images were acquired from 173 NPC patients. The MR and CT images of 28 patients were randomly chosen as the independent tested set. The remaining images were used to build a conditional GAN (cGAN) and a cycle-consistency GAN (cycleGAN). A U-net was used as the generator in cGAN, whereas a residual-Unet was used as the generator in cycleGAN. The cGAN was trained using the deformable registered MR-CT image pairs, whereas the cycleGAN was trained using the unregistered MR and CT images. The generated synthetic CT (SCT) images from cGAN and cycleGAN were compared with the true CT images with respect to their Hounsfield Unit (HU) discrepancy and dosimetric accuracy for NPC IMRT plans.

RESULTS: The mean absolute errors within the body were 69.67 ± 9.27 HU and 100.62 ± 7.39 HU for the cGAN and cycleGAN, respectively. The 2%/2-mm γ passing rates were (98.68 ± 0.94)% and (98.52 ± 1.13)% for the cGAN and cycleGAN, respectively. Meanwhile, the absolute dose discrepancies within the regions of interest were (0.49 ± 0.24)% and (0.62 ± 0.36)%, respectively.

CONCLUSION: Both cGAN and cycleGAN could swiftly generate accurate SCT volume images from MR images, with high dosimetric accuracy for NPC IMRT planning. cGAN was preferable if high-quality MR-CT image pairs were available.

Volume

150

First Page

217

Last Page

224

DOI

10.1016/j.radonc.2020.06.049

ISSN

1879-0887

PubMed ID

32622781

Share

COinS