Laser Capture Microdissection of Glioma Subregions for Spatial and Molecular Characterization of Intratumoral Heterogeneity, Oncostreams, and Invasion.

Document Type

Article

Publication Date

4-12-2020

Publication Title

Journal of visualized experiments : JoVE

Abstract

Gliomas are primary brain tumors characterized by their invasiveness and heterogeneity. Specific histological patterns such as pseudopalisades, microvascular proliferation, mesenchymal transformation and necrosis characterize the histological heterogeneity of high-grade gliomas. Our laboratory has demonstrated that the presence of high densities of mesenchymal cells, named oncostreams, correlate with tumor malignancy. We have developed a unique approach to understand the mechanisms that underlie glioma's growth and invasion. Here, we describe a comprehensive protocol that utilizes laser capture microdissection (LMD) and RNA sequencing to analyze differential mRNA expression of intra-tumoral heterogeneous multicellular structures (i.e., mesenchymal areas or areas of tumor invasion). This method maintains good tissue histology and RNA integrity. Perfusion, freezing, embedding, sectioning, and staining were optimized to preserve morphology and obtain high-quality laser microdissection samples. The results indicate that perfusion of glioma bearing mice using 30% sucrose provides good morphology and RNA quality. In addition, staining tumor sections with 4% Cresyl violet and 0.5% eosin results in good nuclear and cellular staining, while preserving RNA integrity. The method described is sensitive and highly reproducible and it can be utilized to study tumor morphology in various tumor models. In summary, we describe a complete method to perform LMD that preserves morphology and RNA quality for sequencing to study the molecular features of heterogeneous multicellular structures within solid tumors.

Issue

158

DOI

10.3791/60939

ISSN

1940-087X

PubMed ID

32338655

Share

COinS