Crowdsourcing Disease Biomarker Discovery Research: The IP4IC Study

Michael B. Chancellor, Oakland University William Beaumont School of Medicine
Sarah N. Bartolone, William Beaumont Hospital
Andrew Veerecke, William Beaumont Hospital
Laura E. Lamb, Oakland University William Beaumont School of Medicine

Abstract

© 2018 American Urological Association Education and Research, Inc. Purpose: Biomarker discovery is limited by readily assessable, cost efficient human samples available in large numbers that represent the entire heterogeneity of the disease. We developed a novel, active participation crowdsourcing method to determine BP-RS (Bladder Permeability Defect Risk Score). It is based on noninvasive urinary cytokines to discriminate patients with interstitial cystitis/bladder pain syndrome who had Hunner lesions from controls and patients with interstitial cystitis/bladder pain syndrome but without Hunner lesions. Materials and Methods: We performed a national crowdsourcing study in cooperation with the Interstitial Cystitis Association. Patients answered demographic, symptom severity and urinary frequency questionnaires on a HIPAA (Health Insurance Portability and Accountability Act) compliant website. Urine samples were collected at home, stabilized with a preservative and sent to Beaumont Hospital for analysis. The expression of 3 urinary cytokines was used in a machine learning algorithm to develop BP-RS. Results: The IP4IC study collected a total of 448 urine samples, representing 153 patients (147 females and 6 males) with interstitial cystitis/bladder pain syndrome, of whom 54 (50 females and 4 males) had Hunner lesions. A total of 159 female and 136 male controls also participated, who were age matched. A defined BP-RS was calculated to predict interstitial cystitis/bladder pain syndrome with Hunner lesions or a bladder permeability defect etiology with 89% validity. Conclusions: In this novel participation crowdsourcing study we obtained a large number of urine samples from 46 states, which were collected at home, shipped and stored at room temperature. Using a machine learning algorithm we developed BP-RS to quantify the risk of interstitial cystitis/bladder pain syndrome with Hunner lesions, which is indicative of a bladder permeability defect etiology. To our knowledge BP-RS is the first validated urine biomarker assay for interstitial cystitis/bladder pain syndrome and one of the first biomarker assays to be developed using crowdsourcing.