Untargeted metabolomics reveals distinct metabolic reprogramming in endothelial cells co-cultured with CSC and non-CSC prostate cancer cell subpopulations.

Anusha Jayaraman
Praveen Kumar, Beaumont Health
Silvia Marin
Pedro de Atauri
Francesca Mateo
Timothy M Thomson
Josep J Centelles
Stewart F Graham, Beaumont Health
Marta Cascante

Abstract

Tumour angiogenesis is an important hallmark of cancer and the study of its metabolic adaptations, downstream to any cellular change, can reveal attractive targets for inhibiting cancer growth. In the tumour microenvironment, endothelial cells (ECs) interact with heterogeneous tumour cell types that drive angiogenesis and metastasis. In this study we aim to characterize the metabolic alterations in ECs influenced by the presence of tumour cells with extreme metastatic abilities. Human umbilical vein endothelial cells (HUVECs) were subjected to different microenvironmental conditions, such as the presence of highly metastatic PC-3M and highly invasive PC-3S prostate cancer cell lines, in addition to the angiogenic activator vascular endothelial growth factor (VEGF), under normoxia. Untargeted high resolution liquid chromatography-mass spectrometry (LC-MS) based metabolomics revealed significant metabolite differences among the various conditions and a total of 25 significantly altered metabolites were identified including acetyl L-carnitine, NAD+, hypoxanthine, guanine and oleamide, with profile changes unique to each of the experimental conditions. Biochemical pathway analysis revealed the importance of fatty acid oxidation and nucleotide salvage pathways. These results provide a global metabolic preview that could help in selectively targeting the ECs aiding in either cancer cell invasion or metastasis in the heterogeneous tumour microenvironment.