SARS-CoV-2 Genotyping Highlights the Challenges in Spike Protein Drift Independent of Other Essential Proteins.
Document Type
Article
Publication Date
9-9-2024
Publication Title
Microorganisms
Abstract
As of 2024, SARS-CoV-2 continues to propagate and drift as an endemic virus, impacting healthcare for years. The largest sequencing initiative for any species was initiated to combat the virus, tracking changes over time at a full virus base-pair resolution. The SARS-CoV-2 sequencing represents a unique opportunity to understand selective pressures and viral evolution but requires cross-disciplinary approaches from epidemiology to functional protein biology. Within this work, we integrate a two-year genotyping window with structural biology to explore the selective pressures of SARS-CoV-2 on protein insights. Although genotype and the Spike (Surface Glycoprotein) protein continue to drift, most SARS-CoV-2 proteins have had few amino acid alterations. Within Spike, the high drift rate of amino acids involved in antibody evasion also corresponds to changes within the ACE2 binding pocket that have undergone multiple changes that maintain functional binding. The genotyping suggests selective pressure for receptor specificity that could also confer changes in viral risk. Mapping of amino acid changes to the structures of the SARS-CoV-2 co-transcriptional complex (nsp7-nsp14), nsp3 (papain-like protease), and nsp5 (cysteine protease) proteins suggest they remain critical factors for drug development that will be sustainable, unlike those strategies targeting Spike.
Volume
12
Issue
9
First Page
1863
Recommended Citation
Prokop JW, Alberta S, Witteveen-Lane M, Pell S, Farag HA, Bhargava D, et al [Bhatti H, Arora S, Pearson D, Goodyke A, Cook TW, , Zieba J, Sims MD, Hassouna H, Rajasekaran S, Tamae Kakazu MA, Chesla D, Olivero R, Caulfield AJ] SARS-CoV-2 genotyping highlights the challenges in spike protein drift independent of other essential proteins. microorganisms. 2024 Sep 9;12(9):1863. doi: 10.3390/microorganisms12091863. PMID: 39338537
DOI
10.3390/microorganisms12091863
ISSN
2076-2607
PubMed ID
39338537