Pineal Abnormalities In The Pediatric Population - Review Of Anatomy, Histology, Immunochemistry, Pathology And Imaging

Anant Krishnan
Adela Pouzar
Ay-Ming Wang
Carol C. V. Lima

Follow this and additional works at: https://scholarlyworks.beaumont.org/radiology_confabstract

Part of the Radiation Medicine Commons
Abstract Archives of the RSNA, 2021

NR02-A12

Pineal Abnormalities In The Pediatric Population - Review Of Anatomy, Histology, Immunochemistry, Pathology And Imaging.

Participants
Anant Krishnan, MD, Troy, Michigan (Abstract Co-Author) Nothing to Disclose
Adela Pouzar, MD, Royal Oak, Michigan (Abstract Co-Author) Nothing to Disclose
Ay-Ming Wang, MD, Bloomfield Hills, Michigan (Abstract Co-Author) Nothing to Disclose
Carol C. V. Lima, MEd, Troy, Michigan (Presenter) Nothing to Disclose

TEACHING POINTS
1- Pineal gland lesions are responsible for 3-8% of pediatric intracranial tumors.2- Our aim is to review anatomy, histology, normal development, immunochemistry tumor markers, imaging and pathology of pineal gland lesions in the pediatric population.3- Radiologists should be aware of the peculiarities of these lesions to minimize errors of interpretation.

TABLE OF CONTENTS/OUTLINE
1. Anatomy, histology and normal development of the pineal gland.2. Germ cell tumor types and tumor markers. Image 1: Germinoma secondary to synchronous development at multiple sites. Post-contrast MRI reveals multiple areas of enhancement including the foramen of Monroe and basal cisterns. 3. Pineal parenchymal tumors and immunohistochemistry. Image 2: Pineoblastoma. CT/MRI showing mass effect and CNS spread.4. Glial Tumors and Pineal cystic lesions. Image 3: Multiloculated partially cystic process in the pineal gland with enhancement along the septations. The second one is a pineal cyst case with hemorrhage. 5. Miscellaneous. Image 4 showing an Atypical teratoid/rhabdoid tumor with CNS spread to pineal gland.

Printed on: 02/18/22